
The if statement and
files

The if statement
Do a code block only when something is True

if test:
 print "The expression is true"

Example
if "GAATTC" in "ATCTGGAATTCATCG":
 print "EcoRI site is present"

if the test is true...
if "GAATTC" in "ATCTGGAATTCATCG":
 print "EcoRI site is present"

The test is: "GAATTC" in "ATCTGGAATTCATCG"

if "GAATTC" in "ATCTGGAATTCATCG":
 print "EcoRI site is present"

Then print the message

>>> if "GAATTC" in "ATCTGGAATTCATCG":
... print "EcoRI is present"
...
EcoRI is present
>>>

Here is it done in the Python shell

What if you want the
false case?

if not "GAATTC" in "AAAAAAAAA":
 print "EcoRI will not cut the sequence"

There are several possibilities; here’s two

2) The not operator switches true and false

1) Python has a not in operator

if "GAATTC" not in "AAAAAAAAA":
 print "EcoRI will not cut the sequence"

In the Python shell
>>> x = True
>>> x
True
>>> not x
False
>>> not not x
True
>>> if "GAATTC" not in "AAAAAAAAA":
... print "EcoRI will not cut the sequence"
...
EcoRI will not cut the sequence
>>> if not "GAATTC" in "ATCTGGAATTCATCG":
... print "EcoRI will not cut the sequence"
...
>>> if not "GAATTC" in "AAAAAAAAA":
... print "EcoRI will not cut the sequence"
...
EcoRI will not cut the sequence
>>>

else:
What if you want to do one thing when the test
is true and another thing when the test is false?

if "GAATTC" in "ATCTGGAATTCATCG":
 print "EcoRI site is present"
else:
 print "EcoRI will not cut the sequence"

Do the first code block (after the if:) if the
test is true

Do the second code block (after
the else:) if the test is false

Examples with else
>>> if "GAATTC" in "ATCTGGAATTCATCG":
... print "EcoRI site is present"
... else:
... print "EcoRI will not cut the sequence"
...
EcoRI site is present
>>> if "GAATTC" in "AAAACTCGT":
... print "EcoRI site is present"
... else:
... print "EcoRI will not cut the sequence"
...
EcoRI will not cut the sequence
>>>

Where is the site?
The ‘find’ method of strings returns the index of a

substring in the string, or -1 if the substring doesn’t exist

>>> seq = "ATCTGGAATTCATCG"
>>> seq.find("GAATTC")
5
>>> seq.find("GGCGC")
-1
>>>

There is a GAATTC
at position 5

But there is no GGCGC
in the sequence

}
}

But where is the site?
>>> seq = "ATCTGGAATTCATCG"
>>> pos = seq.find("GAATTC")
>>> if pos == -1:
... print "EcoRI does not cut the sequence"
... else:
... print "EcoRI site starting at index", pos
...
EcoRI site starting at index 5
>>>

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

Start by creating the string “ATCTGGAATTCATCG”
and assigning it to the variable with name ‘seq’

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

Using the seq string, call the method named find. This
looks for the string “GAATTC” in the seq string

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

The string “GAATC” is at position 5 in the seq string.
Assign the 5 object to the variable named pos.

The variable name “pos” is often used for positions.
Common variations are “pos1”, “pos2”,

“start_pos”, “end_pos”

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

Do the test for the if statement

Is the variable pos equal to -1?

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

Since pos is 5 and 5 is not equal to -1,
this test is false.

The test is False

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

Skip the first code block
(that is only run if the test is True)

Instead, run the code block after the else:

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

This is a print statement.
Print the index of the start position

This prints

EcoRI site starting at index 5

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
 print "EcoRI does not cut the sequence"
else:
 print "EcoRI site starting at index", pos

There are no more statements so Python stops.

A more complex example

restriction_sites = [
 "GAATTC", # EcoRI
 "GGATCC", # BamHI
 "AAGCTT", # HindIII
]

seq = raw_input("Enter a DNA sequence: ")

for site in restriction_sites:
 if site in seq:
 print site, "is a cleavage site"
 else:
 print site, "is not present"

Using if inside a for

Nested code blocks

restriction_sites = [
 "GAATTC", # EcoRI
 "GGATCC", # BamHI
 "AAGCTT", # HindIII
]

seq = raw_input("Enter a DNA sequence: ")

for site in restriction_sites:
 if site in seq:
 print site, "is a cleavage site"
 else:
 print site, "is not present" }This is the code

block for the
for statement

This is the code
block for the

True part of the
if statement

restriction_sites = [
 "GAATTC", # EcoRI
 "GGATCC", # BamHI
 "AAGCTT", # HindIII
]

seq = raw_input("Enter a DNA sequence: ")

for site in restriction_sites:
 if site in seq:
 print site, "is a cleavage site"
 else:
 print site, "is not present"

}

This is the code
block for the

False part of the
if statement

restriction_sites = [
 "GAATTC", # EcoRI
 "GGATCC", # BamHI
 "AAGCTT", # HindIII
]

seq = raw_input("Enter a DNA sequence: ")

for site in restriction_sites:
 if site in seq:
 print site, "is a cleavage site"
 else:
 print site, "is not present" }

The program output

Enter a DNA sequence: AATGAATTCTCTGGAAGCTTA
GAATTC is a cleavage site
GGATCC is not present
AAGCTT is a cleavage site

Read lines from a file

• raw_input() asks the user for input

• Most of the time you’ll get data from a file.
(Or would you rather type in the sequence
every time?)

• To read from a file you need to tell Python
to open that file.

The open function
>>> infile = open("/usr/coursehome/dalke/10_sequences.seq")
>>> print infile
<open file '/usr/coursehome/dalke/10_sequences.seq', mode 'r' at 0x817ca60>
>>>

open returns a new object of type file

A file can’t be displayed like a
number or a string. It is useful
because it has methods for working

with the data in the file.

the readline() method
>>> infile = open("/usr/coursehome/dalke/10_sequences.seq")
>>> print infile
<open file '/usr/coursehome/dalke/10_sequences.seq', mode 'r' at 0x817ca60>
>>> infile.readline()
'CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA\n'
>>>

readline returns one line from the file

The line includes the end of line
character (represented here by “\n”)

(Note: the last line of some
files may not have a “\n”)

readline finishes with ""
>>> infile = open("/usr/coursehome/dalke/10_sequences.seq")
>>> print infile
<open file '/usr/coursehome/dalke/10_sequences.seq', mode 'r' at 0x817ca60>
>>> infile.readline()
'CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA\n'
>>> infile.readline()
'ATTTTTAACTTTTCTCTGTCGTCGCACAATCGACTTTCTCTGTTTTCTTGGGTTTACCGGAA\n'
>>> infile.readline()
'TTGTTTCTGCTGCGATGAGGTATTGCTCGTCAGCCTGAGGCTGAAAATAAAATCCGTGGT\n'
>>> infile.readline()
'CACACCCAATAAGTTAGAGAGAGTACTTTGACTTGGAGCTGGAGGAATTTGACATAGTCGAT\n'
>>> infile.readline()
'TCTTCTCCAAGACGCATCCACGTGAACCGTTGTAACTATGTTCTGTGC\n'
>>> infile.readline()
'CCACACCAAAAAAACTTTCCACGTGAACCGAAAACGAAAGTCTTTGGTTTTAATCAATAA\n'
>>> infile.readline()
'GTGCTCTCTTCTCGGAGAGAGAAGGTGGGCTGCTTGTCTGCCGATGTACTTTATTAAATCCAATAA\n'
>>> infile.readline()
'CCACACCAAAAAAACTTTCCACGTGTGAACTATACTCCAAAAACGAAGTATTGGTTTATCATAA\n'
>>> infile.readline()
'TCTGAAAAGTGCAAAGAACGATGATGATGATGATAGAGGAACCTGAGCAGCCATGTCTGAACCTATAGC\n'
>>> infile.readline()
'GTATTGGTCGTCGTGCGACTAAATTAGGTAAAAAAGTAGTTCTAAGAGATTTTGATGATTCAATGCAAAGTTCTATTAATCGTTCAATTG\n'

>>> infile.readline()
''
>>> When there are no more lines,

readline returns the empty string

Using for with a file
A simple way to read lines from a file

>>> filename = "/usr/coursehome/dalke/10_sequences.seq"
>>> for line in open(filename):
... print line[:10]
...
CCTGTATTAG
ATTTTTAACT
TTGTTTCTGC
CACACCCAAT
TCTTCTCCAA
CCACACCAAA
GTGCTCTCTT
CCACACCAAA
TCTGAAAAGT
GTATTGGTCG
>>>

for starts with the first line in the file ...
then the second ...
then the third ...
...
and finishes with the last line.

A more complex task
List the sequences starting with a cytosine

>>> filename = "/usr/coursehome/dalke/10_sequences.seq"
>>> for line in open(filename):
... line = line.rstrip()
... if line.startswith("C"):
... print line
...
CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA
CACACCCAATAAGTTAGAGAGAGTACTTTGACTTGGAGCTGGAGGAATTTGACATAGTCGAT
CCACACCAAAAAAACTTTCCACGTGAACCGAAAACGAAAGTCTTTGGTTTTAATCAATAA
CCACACCAAAAAAACTTTCCACGTGTGAACTATACTCCAAAAACGAAGTATTGGTTTATCATAA
>>>

Use rstrip to get rid
of the “\n”

Exercise I
Get a sequence from the user. If there is an A in the

sequence, print the number of times it appears in
the sequence. Do the same for T, C and G. If a base

does not exist, don’t print anything.
Enter a sequence: ACCAGGCA
A count: 3
C count: 3
G count: 2

Enter a sequence: TTTTTGGGG
T count: 5
G count: 4

Test input #1:

Test input #2:

Excercise 2
Get a sequence from the user. If there is an A in the

sequence, print the number of times it appears in
the sequence. If it does not exist, print “A not

found”. Do the same for T, C and G.
Enter a sequence: ACCAGGCA
A count: 3
T not found
C count: 3
G count: 2

Enter a sequence: TTTTTGGGG
A not found
T count: 5
C not found
G count: 4

Test input #1:

Test input #2:

Exercise 3
number lines in a file

Read the file /usr/coursehome/dalke/10_sequences.seq .
Print out the line number (starting with 1) then the line.
Remember to use rstrip() to remove the extra newline.

1 CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA
2 ATTTTTAACTTTTCTCTGTCGTCGCACAATCGACTTTCTCTGTTTTCTTGGGTTTACCGGAA
3 TTGTTTCTGCTGCGATGAGGTATTGCTCGTCAGCCTGAGGCTGAAAATAAAATCCGTGGT
4 CACACCCAATAAGTTAGAGAGAGTACTTTGACTTGGAGCTGGAGGAATTTGACATAGTCGAT
5 TCTTCTCCAAGACGCATCCACGTGAACCGTTGTAACTATGTTCTGTGC
6 CCACACCAAAAAAACTTTCCACGTGAACCGAAAACGAAAGTCTTTGGTTTTAATCAATAA
7 GTGCTCTCTTCTCGGAGAGAGAAGGTGGGCTGCTTGTCTGCCGATGTACTTTATTAAATCCAATAA
8 CCACACCAAAAAAACTTTCCACGTGTGAACTATACTCCAAAAACGAAGTATTGGTTTATCATAA
9 TCTGAAAAGTGCAAAGAACGATGATGATGATGATAGAGGAACCTGAGCAGCCATGTCTGAACCTATAGC
10 GTATTGGTCGTCGTGCGACTAAATTAGGTAAAAAAGTAGTTCTAAGAGATTTTGATGATTCAATGCAAAGTTCTATTAATCGTTCAATTG

The output should look like this

Exercise 4
List the sequences in

/usr/coursehome/dalke/10_sequences.seq which have the
pattern CTATA.

Hint: You should find two of them.

Once that works, print the index of the
first time that pattern is found.

Exercise 5 - Filtering
Using /usr/coursehome/dalke/sequences.seq

A. How many sequences are in that file?
B. How many have the pattern CTATA?
C. How many have more than 1000 bases?
D. How many have over 50% GC composition?
E. How many have more than 2000 bases and more than
50% GC composition?

Note: for %GC use float to convert the counts into
floats before doing the division for percentage.

