The 1if statement and
files

The 1 f statement

Do a code block only when something is True

1f test:
print "The expression 1s true”

Example

1f "GAATTC" in "ATCTGGAATTCATCG":
print "EcoRI site 1s present”

if the test is true...

1f "GAATTC" in "ATCTGGAATTCATCG":
print "EcoRI site 1is presTnt"

The test is: "caarTTC" in "ATCTGGAATTCATCG"

Then print the message

i1f "GAATTC" in "ATCTGGAATTCATCG":
print

Here is it done in the Python shell

>>> 1f "GAATTC" 1in "ATCTGGAATTCATCG":
.« o print "EcoRI 1s present”

EcoRI 1s present
>>>

What if you want the
false case?

There are several possibilities; here’s two

|) Python has a operator

if "GAATTC" "AAAAAAAAA" :
print "EcoRI will not cut the sequence”

2) The operator switches true and false

if "GAATTC" in "AAAAAAAAA":
print "EcoRI will not cut the sequence”

In the Python shell

>>> x = True

>>> x

True

>>> not X

False

>>> not not x

True

>>> if "GAATTC" "AAAAAAAAA" :

co print "EcoRI will not cut the sequence”
EcoRI will not cut the sequence

>>> if "GAATTC" in "ATCTGGAATTCATCG":

coe print "EcoRI will not cut the sequence”
>>> if "GAATTC" in "AAAAAAAAA":

.« print "EcoRI will not cut the sequence”

EcoRI will not cut the sequence
>>>

else:

What if you want to do one thing when the test
is true and another thing when the test is false!?

Do the first code block (after the) if the

, test is true
"GAATTC" in "ATCTGGAATTCATCG":

print "EcoRI site 1s present”

print "EcoRI will not cut the sequence"

\ Do the second code block (after
the) if the test is false

Examples with else

>>> 1f "GAATTC" in "ATCTGGAATTCATCG":
coe print "EcoRI site 1s present”
... else:

ce print "EcoRI will not cut the sequence”
EcoRI site 1s present

>>> 1f "GAATTC" in "AAAACTCGT":

coe print "EcoRI site 1s present”
... else:

ce print "EcoRI will not cut the sequence”

EcoRI will not cut the sequence
>>>

Where is the site?

The ‘find’ method of strings returns the index of a
substring in the string, or -1 if the substring doesn’t exist

>>> seq = "ATCTG ATCG" .
>>> seq.find("GAATTC") } There is a GAATTC
> at position 5
.f' n " .
ij> seq.find("GGCGC") } But there is no GGCGC

>>> in the sequence

>>>
>>>
>>>

But where is the site?

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")

if pos ==
print

else:
print

-1:
"EcoRI does not cut the sequence”

"EcoRI site starting at index", pos

EcoRI site starting at index 5

>>>

Start by creating the string “ATCTGGAATTCATCG”
and assigning it to the variable with name ‘seq’

—» seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:
print "EcoRI does not cut the sequence”

else:
print "EcoRI site starting at index", pos

Using the string, call the method named find. This
looks for the string “GAATTC” in the string

seq = "ATCTGGAATTCATCG"
—p pOS = find ("GAATTC")
if pos == -1:
print "EcoRI does not cut the sequence”
else:
print "EcoRI site starting at index", pos

The string “GAATC” is at position 5 in the seq string.
Assign the 5 object to the variable named

seq = "ATCTGGAATTCATCG"
—— = seq.find("GAATTC")
if pos == -1:
print "EcoRI does not cut the sequence”

else:
print "EcoRI site starting at index", pos

The variable name “pos” is often used for positions.
Common variations are “pos|”,“pos2”,

9 ¢¢

“start_pos’,“end_pos”

Do the test for the 1 f statement

Is the variable equal to -1?
seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
— == —-1:
print "EcoRI does not cut the sequence”
else:

print "EcoRI site starting at index", pos

Since pos is 5 and 5 is not equal to -1,
this test is false.

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC") The test is False
—> if : -
print "EcoRI does not cut the sequence”
else:

print "EcoRI site starting at index", pos

Skip the first code block
(that is only run if the test is True)
Instead, run the code block after the else:

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:

else:

Thisis a statement.
Print the index of the start position

seq = "ATCTGGAATTCATCG"
pos = seq.find("GAATTC")
if pos == -1:

else:
- "EcoRI site starting at index", pos

This prints

EcoRI site starting at index 5

There are no more statements so Python stops.

seq = "ATCTGGAATTCATCG"

pos = seq

1f pos ==
print

else:
print

.find ("GAATTC")
-1:
"EcoRI does not cut the sequence”

"EcoRI site starting at index", pos

A more complex example

Using 1 f inside a for

restriction sites = |
"GAATTC", # EcoRI
"GGATCC", # BamHI
"AAGCTT", # HindIII

seq = raw_input("Enter a DNA sequence: ")

for site in restriction sites:
if site in seq:
print site, "is a cleavage site"”
else:

print site, "is not present”

Nested code blocks

restriction sites = |

"GAATTC", # EcoRI
"GGATCC", # BamHI
"AAGCTT", # HindIII

]

seq = raw_input("Enter a DNA sequence: "

for site in restriction sites:

This is the code
block for the
for statement

restriction sites = |

"GAATTC", # EcoRI
"GGATCC", # BamHI
"AAGCTT", # HindIII

]

seq = raw_input("Enter a DNA sequence:

for site in restriction sites:
if site in seq:

else:
print site, "is not present”

This is the code
block for the
True part of the
1f statement

restriction sites = |

"GAATTC", # EcoRI
"GGATCC", # BamHI
"AAGCTT", # HindIII

]
seq = raw_input("Enter a DNA sequence: ")

for site in restriction sites:

if site in seq: This is the code
print site, "is a cleavage site"”
else: block for the
) False part of the

if statement

The program output

Enter a DNA sequence: AAT TCTGG
GAATTC 1s a cleavage site

GGATCC 1s not present

AAGCTT is a cleavage site

Read lines from a file

® raw_input() asks the user for input

® Most of the time you'll get data from a file.
(Or would you rather type in the sequence
every time!?)

® TJo read from a file you need to tell Python
to open that file.

The open function

>>> infile = open("/usr/coursehome/dalke/10 sequences.seq")

>>> print infile
<open file '/usr/coursehome/dalke/10 sequences.seq', mode 'r' at 0x817ca60>
>>>

open returns a new object of type file

A file can't be displayed like a
number or a string. It 1s useful
because 1t has methods for working

with the data in the file.

the readline() method

>>> infile = open("/usr/coursehome/dalke/10 sequences.seq")
>>> print infile

<open file '/usr/coursehome/dalke/10 sequences.seq', mode 'r' at 0x817ca60>
>>> infile.readline()

'CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA\N'
>>>

readline returns one line from the file

The line includes the end of line
character (represented here by “\n”)

(Note: the last line of some
files may not have a “\n”)

readline finishes with

>>> infile = open("/usr/coursehome/dalke/10 sequences.seq")

>>> print infile

<open file '/usr/coursehome/dalke/10 sequences.seq', mode 'r' at 0x817ca60>
>>> infile.readline()
'CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA\N'

>>> infile.readline()
"ATTTTTAACTTTTCTCTGTCGTCGCACAATCGACTTTCTCTGTTTTCTTGGGTTTACCGGAA\Nn'
>>> infile.readline()
'TTGTTTCTGCTGCGATGAGGTATTGCTCGTCAGCCTGAGGCTGAAAATAAAATCCGTGGT\n''

>>> infile.readline()
'CACACCCAATAAGTTAGAGAGAGTACTTTGACTTGGAGCTGGAGGAATTTGACATAGTCGAT\n'

>>> infile.readline()
'TCTTCTCCAAGACGCATCCACGTGAACCGTTGTAACTATGTTCTGTGC\n'

>>> infile.readline()
'CCACACCAAAAAAACTTTCCACGTGAACCGAAAACGAAAGTCTTTGGTTTTAATCAATAA\N'

>>> infile.readline()
'GTGCTCTCTTCTCGGAGAGAGAAGGTGGGCTGCTTGTCTGCCGATGTACTTTATTAAATCCAATAA\N'
>>> infile.readline()
'CCACACCAAAAAAACTTTCCACGTGTGAACTATACTCCAAAAACGAAGTATTGGTTTATCATAA\N'
>>> infile.readline()

'TCTGAAAAGTGCAAAGAACGATGATGATGATGATAGAGGAACCTGAGCAGCCATGTCTGAACCTATAGC\n'
>>> infile.readline()
'GTATTGGTCGTCGTGCGACTAAATTAGGTAAAAAAGTAGTTCTAAGAGATTTTGATGATTCAATGCAAAGTTCTATTAATCGTTCAATTG\n'

>>> infile.readline()

When there are no more lines,
readline returns the empty string

>>>

Using for with a file

A simple way to read lines from a file

>>> filename

"/usr/coursehome/dalke/10 sequences.seq"

>>> for line in open(filename):
print line[:10]

CCTGTATTAG
ATTTTTAACT
TTGTTTCTGC
CACACCCAAT
TCTTCTCCAA
CCACACCAAA
GTGCTCTCTT
CCACACCAAA
TCTGAAAAGT

GTATTGGTCG
>>>

for starts with the first line in the file ...

then the second ...
then the third ...

and finishes with the last line.

A more complex task

List the sequences starting with a cytosine

>>> filename = "/usr/coursehome/dalke/10 sequences.seq"
>>> for line in open(filename):

e line = line.rstrip() <*— Use rstrip to get rid

if line.startswith("C"): Of the “\n”
“ee print line

CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA
CACACCCAATAAGTTAGAGAGAGTACTTTGACTTGGAGCTGGAGGAATTTGACATAGTCGAT
CCACACCAAAAAAACTTTCCACGTGAACCGAAAACGAAAGTCTTTGGTTTTAATCAATAA
CCACACCAAAAAAACTTTCCACGTGTGAACTATACTCCAAAAACGAAGTATTGGTTTATCATAA

>>>

Exercise |

Get a sequence from the user. If there is an A in the
sequence, print the number of times it appears in
the sequence. Do the same for T, C and G. If a base
does not exist, don’t print anything.

Enter a sequence: ACCAGGCA

] A count: 3
Test input #1: C count: 3

G count: 2

Enter a sequence: TTTTTGGGG

Test input #2: T count: 5
G count: 4

Excercise 2

Get a sequence from the user. If there is an A in the
sequence, print the number of times it appears in

the sequence. If it does not exist, print “A not
found”. Do the same for T, C and G.

Enter a sequence: ACCAGGCA

. A count: 3
TeSt |nPUt #I . T not found

C count: 3
G count: 2

Enter a sequence: TTTTTGGGG
A not found

count: 5

not found

count: 4

Test input #2:

@ O H

Exercise 3
number lines in a file

Read the file /usr/coursehome/dalke/10 _sequences.seq.
Print out the line number (starting with 1) then the line.
Remember to use rstrip() to remove the extra newline.

The output should look like this

CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA
ATTTTTAACTTTTCTCTGTCGTCGCACAATCGACTTTCTCTGTTTTCTTGGGTTTACCGGAA
TTGTTTCTGCTGCGATGAGGTATTGCTCGTCAGCCTGAGGCTGAAAATAAAATCCGTGGT
CACACCCAATAAGTTAGAGAGAGTACTTTGACTTGGAGCTGGAGGAATTTGACATAGTCGAT
TCTTCTCCAAGACGCATCCACGTGAACCGTTGTAACTATGTTCTGTGC
CCACACCAAAAAAACTTTCCACGTGAACCGAAAACGAAAGTCTTTGGTTTTAATCAATAA
GTGCTCTCTTCTCGGAGAGAGAAGGTGGGCTGCTTGTCTGCCGATGTACTTTATTAAATCCAATAA
CCACACCAAAAAAACTTTCCACGTGTGAACTATACTCCAAAAACGAAGTATTGGTTTATCATAA
TCTGAAAAGTGCAAAGAACGATGATGATGATGATAGAGGAACCTGAGCAGCCATGTCTGAACCTATAGC

0 GTATTGGTCGTCGTGCGACTAAATTAGGTAAAAAAGTAGTTCTAAGAGATTTTGATGATTCAATGCAAAGTTCTATTAATCGTTCAATTG

R WOWooJouUd WN -

Exercise 4

List the sequences in

[usr/coursehome/dalke/ 10 _sequences.seq which have the
pattern CTATA.

Hint: You should find two of them.

Once that works, print the index of the
first time that pattern is found.

Exercise 5 - Filtering

Using /usr/coursehome/dalke/sequences.seq

A. How many sequences are in that file?

B. How many have the pattern CTATA!?

C. How many have more than 1000 bases?

D. How many have over 50% GC composition!?

E. How many have more than 2000 bases and more than
50% GC composition?

Note: for %GC use float to convert the counts into
floats before doing the division for percentage.

